Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics.
نویسندگان
چکیده
We present a numerical method for simulations of spinodal decomposition of liquid-vapor systems. The results are in excellent agreement with theoretical predictions for all expected time regimes from the initial growth of "homophase fluctuations" up to the inertial hydrodynamics regime. The numerical approach follows a modern formulation of the smoothed particle hydrodynamics method with a van der Waals equation of state and thermal conduction. The dynamics and thermal evolution of instantaneously temperature-quenched systems are investigated. Therefore, we introduce a simple scaling thermostat that allows thermal fluctuations at a constant predicted mean temperature. We find that the initial stage spinodal decomposition is strongly affected by the temperature field. The separated phases react on density changes with a change in temperature. Although, the thermal conduction acts very slowly, thermal deviations are eventually compensated. The domain growth in the late stage of demixing is found to be rather unaffected by thermal fluctuations. We observe a transition from the Lifshitz-Slyozov growth rate with 1/3 exponent to the inertial hydrodynamics regime with a rate of 2/3, only excepted from simulations near the critical point where the liquid droplets are observed to nucleate directly in a spherical shape. The transition between the growth regimes is found to occur earlier for higher initial temperatures. We explain this time dependency with the phase interfaces that become more diffuse and overlap with approaching the critical point. A prolonging behavior of the demixing process is observed and also expected to depend on temperature. It is further found that the observations can excellently explain the growth behavior for pure nonisothermal simulations that are performed without thermostat.
منابع مشابه
Numerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملInsights from inside the spinodal: Bridging thermalization time scales with smoothed particle hydrodynamics.
We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen thermostat. It controls the strength of heat bath coupling and allow...
متن کاملInvestigation on the sloshing effect in a 2D tank under harmonic excitation using Smoothed Particle Hydrodynamics (SPH) and Finite Volume method (FVM)
Abstract Sloshing describes liquids motion in the semi-filled tanks, and exerts dynamic loading on its walls. This effect is of great importance in a number of dynamic systems e.g. aerospace vehicles, road tankers, liquefied natural gas carriers, elevated water towers and petroleum cylindrical tanks. Pressures insert impacts which are important for structural strength evaluation and its co...
متن کاملA MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...
متن کاملIncompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2015